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GALERKIN AND COLLOCAT ION- CALERKIN METHODS

WI TH SUPERCONVERCENCE AND OPTIMAL FLUXES

1 3C. F. Carey , D. Humphrey , M. F. Wheeler

ABSTRACT

Finite element methods are formulated ~md i n v e st ig a t e d  for  the e ffe ct ive-

ness fac tor problem for heat and mass transfer with chemical reactions in -

catalyst pellet models. A Galerkin finite element method is compared with a

previous C’ collocation method ([7], 1975). A s herne that is conceptually

intermediate between these two methods and accordingly has been termed

collocation—Galerkjn is formulated and numerical  experiments considered.

Of particular interest here are superconvergence results at the Gauss and

Jacobi points, respectively. Numerical studies of superconvergence in the

presence of a nonlinear reaction—rate term are presented. An integral formula

is devised and used to compute the flux at the pellet surface to optimal ac-

curacy. Numerical experiments are conducted to demonstrate the improvement

in computed fluxes.

INTRODUCTION

The particular class of nonlinear two—point bc~undary problems considered

here arise in describing heat and mass transfer in a catalyst pell et with

accompanying chemical reaction . Such problems are of considerable importance

in the stud y of packed bed reactors in chemical engineering where the catalyst

Texas Institute for Computat. tonal Mechanics , University of Texas, Austin ,
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pellets constitute the solid phase. The complexi ty of transport processes

for both fluid and solid phases in the reactor l ead to “separation” of the

problem to computations in the solid and fluid , respectively . Moreover,

since the characteristic local rates in the pellet are large relative to

those for the reactor , a steady— state model for heat and mass transfer In the

pellet can be assumed [1 ,2,3).

In practical simulations of transient models  ~or chemical reactors the

ca talyst—pellet problem may require solution numerous times. Moreover, the

form of solution may be quite sensitive to the choice of reaction rate para-

meters such as Thiele modulus and there may he hifurcations with multiple

solutions. Consequently, numerical solution may be a formidable task for

certain parameter ranges. The model is capable of representing both relative-

ly quiescent solutions where the reaction rate is small, and also “ignited”

states where the reaction rate is high in the vicinity of the pellet surface

and a boundary—layer results.

For these reasons a variety of numerical methods have been developed

for solving the associated nonlinear two—point problems . Global residual

methods , par t icu lar ly  collocation methods , have been devised and extensively

used. Of these methods global orthogonal collocation methods provide optimal

accuracy and e f f i c i ent  solution for e f f ec t iveness  fac to r  problems with low—

to—moderate and even quite large Thiele modu’us. Excel lent  t reatments  of the

theory and techniques and numerous examples ar e described in the recent

l i terature [4 ,5).

If the Thiele modulus is large and the solution has a steep gradient near

the pellet surface the global orthogonal collocation method , and global ex-

pansion methods In general , arc not a p p r o p r i a t e .  The polynomial degree must

be high to ensure that there are sufficient points in the boundary—layer

_ _ _ _- - - IT  . 



zone. This, in turn , leads to concommitant errors due to ill—conditioning

of the nonlinear algebraic problem and also to convergence problems in itera-

tive solution algorithms. Essentially, these global methods attempt to de-

termine a very smooth solution to problems where the exact solution may have

discontinuous or large deriv~itives. One approach to the problem with large

Thiele modulus introduces a “bur nt Out ” region which the solution is zero

and a “reaction layer” and the problem is solved in the reaction layer by

orthogonal collocation [6) .

In a previous paper ( 71 the method of orthogonal collocation on finite

elements is developed to combine the accuracy of orthogonal collocation with-

in a finite element framework. This naturally allows graded nonuniform meshes

which are coarse in the pellet interior and fine in the boundary layer. The

particular scheme applied is a C1 collocation method with polynomial approxi-

mation on each element and , naturally, continuity of function and derivative

only at the elemen t interfaces.

C
0
—Calerkin techniques presently constitute the most widely analysed and

applied class of finite element methods for two—point problems and elliptic

boundary—value problems (for example, see (8~— [ll3). Superconvergence es-

timates of the Galerkin and collocation methods have been proven for linear

two—point problems with smooth coefficients [12 ,16 ,221. In the earl.y sections

of this paper we formulate and apply the C
0
—Galerkin finite element method

for the nonlinear pellet problem, addressing in particular the superconver—

gence properties in the presence of the nonlinearity.

The C~ collocation formulation requires no quadratures and this may

lead to more efficient computations than r.alerkin methods, especially when

iterative solution is required and the computation in the pellet is coup led

wi th a transient t ime—stepp ing solution in the fluid ithas~ . On the other
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hand, the C0—Galerkin method while nccessitacing ciemen t quadrature computa—

tions , requires only con t inu ity  of the appuoximaut . Thus, the Galerkin

methods are better able to treat discontthuities, layers and other irregular

solution behavior. We combine sonic of the efficiency and simplicity of C1

collocation with the lower con t inu i ty  of C0— Calc rk in  in an intermediate

method, here termed C°—Collocation—Galerkizt. Error estimates for such “weak”

methods and linear problems are presented in [15]. The C°—Ga1erkin method

is superconvergent at the nodes (knows). For linear problems the C°—Coj.loca—

tion—Galerkin method is superconvergent at the nodes (knots) if the Jacobi

points are collocation points and we give here the theoretical superconver—

gence estimates for linear and nonlinear reaction rate terms with accompar.y—

ing numerical studies of convergence and accuracy (16].

The flux at the catalyst boundary is of practical importance and a

special quadrature technique is applied on the extreme clement at the boundary

to compute the flux to optimal accuracy. Numerical results for the boundary

flux are compared with chose obtainod by more standard approaches.

______________ ~~~iJ
— ______________ -
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PART I. GALERKIN MET1IOI) , S UPERCONVERCENCE AN!) FLUX CALCULATIONS

Galerkin Finite Element Met hod

We describe br ief ly the standar d Gale r kin  finite element method prior

to considering details concerning superconvergence. This also facilitates

subsequent description of the C°—Collocation-Galerkin method .

Consider the d i f f u s i o n  and r eact ion of a s p cc ie s  in an isothermal cata-

lyst pellet as described by the equation

~J 
(~~~

1 
~~ f ( c )  , 0 <  x < 1  (1)

with

(O) 0 and — (1) — Bi
~

(c(1 ) — 1) (2)

where a 1,2 or 3 for planar , cylindrical and spherical geometry , Si is

the Biot number for mass transfer [1), and f(c) is the reaction rate expression

for the problem in consideration.

Introduce an approximation c(x) into the differential equation to deter-

mine the residual . 011 app l y i ng t i l e  wei gh t e d  res idua t condition , the usual

integration by par t s  yields t h e  (weak) var i ;l t innal st a t ement  of the p roblem ,

- 

1 

Xa l (C~~(X )V , ( X ) + f (c) v ) d x  + x
a_1

c.(x)v(x) 0 (3)

for admissible test functions v(x) and where t h e “prime” denotes differentiation.

In a C0—Lagrange finite element method the approximation on a partition

of m elements and having n nodes x1 
= 0 < x2 < ... < x~ = 1, has the form

n
c (x )  = ~ c .4 (x) (4)

jal ~
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where (x) ) ar e piecewise—po lynomial patch f linctions associated with the

nodes {j} of the mesh. In the simplest instan ce , .(x) is linear on each

element and satisfies 4~ (x~ ) = 6ij’ Kronecker delta.

The Galerkin method utilizes the same test space as trial space so

that v(x) = {~~.(x)J, i = 1, . . ., n and from equation (3),

~ 
( j’xa_ 1

~~~~~ix) C . - 
j X

a 1
~~~f ( c )d  + (‘(])~~.(l) ,

i,j = 1, 2 , . . .  ,n (5)

whence f r om (2) ,

1

~~~~~~~ 

X~
-’

~l~~~~dX) c . + Bi
m

C
n6

in + f Xa l
~~
1
f(C)d X = Bi

~
ó
~~

i,j 1,2,... ,n (6)

For convenience, we write this in matrix form as

Ac + F(c) = b or g(c) = 0 (7)

where the vector F(c) represents the contribution of the nonlinear reaction

rate term to the finite element system and , clearly , g(c) = Ac + F(c) — b.

Considering a general element e of degree k with end nodes X
r and

x , (s r + k ) ,  the element contribut ions  to the nonlinear system (7) are

x

(ajj) =

and i , •j = 1, 2 , . . .  ,k+l (8)

~~i~e J Xa
~~~~~(X) f ( C) d X

where {~~.(x)) are t he local Lagrange polynomials of degree k on element e,
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L~ (x~ ) 
~~ 

°n = [x
r i X J •

Remark: The above formulat ion is quite  standard and can be readily general-

ized to f i n i t e  element bases other than those of Lagrange type (10,11]. We

shall util ize these and similar relations for  subsequent superconvergence ,

flux and Collocation—Galerkin derivations.

Nonlinear System Solution

Depending on the strength of the noni iut’:l r react ~ou rate term , either

of two iterative techniques are appl ie d . ! ‘o r mild ly nonlinear problems a

Picard (successive approximation) iteration is suitable. For iterate k+1,

k+1 b - F (ck ) , k = 0,1,... (9)

This iteration fails at large Thiele modulus and a Newton i teration is used ,

— 
k
) = _g(ck) , k = 0,1,... (10)

Details concerning the structure of the Jacobian J and system matrix A

efficient direct solution by blocks and element block storage are similar to

those described in the previous study of orthogonal collocation on f in i t e

elements [7) and will not be elaborated upo n here. One important distinction

is that J and A are now symmetric , a feature that is exploited in the

solution algorithms .

Error Estimates

Let 2(x) denote the exact solution and c(x) ~(x) 
— c(x) the error.

We introduce an inner produc t with weight factor and the associated

- 

- 
normed spaces 3m which are the closure of C func t ions  with respect to

the weighted rn—norm,

II U l t  = (
~ u~~~~ ~~~~ . (11)
\i= 0 /

where 
~f f = J ~~~~ dx defines the weighted norm.

- _____ :.__ - -.
-

~

--- 
. 

~~~~~~~~~~~~~~~~~~~~~ -~~~-
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For a linear react  ion t c n n  - 1lc standard ti r)r e ;  L I mates follow even for the

singular d i f f e r e n t i a l  equa t ion [ l . 7 J ,

e < Chm 
~ 

C
~~~~ B (12)

where B is the uni t  “ball ” in the domain , and h is the element length.

The global weighted norm of the error in the derivative is O(h m l ) as

expected 110 , 17].

Remark: For a spherical pellet (a = 3) the t r ans fo rma t ion  u = xc yields a

nonsingular equation and the standard L2 no rms can be used to obtain

II e~~~ ~ Ch m
~~ l u  t m~ J 0,l,...,m (13)

where f~ = [0,11.

Let the reaction rate expression be nonlinear with f and ~f /~u con-

tinuous on x E [0 ,1], c € [—
~~ , 

O p] .  Fur the rmore , let -
~~
-
~~

- (x ,u)~ < M for all

x,u as above and

(x ,u) < X  < A  (14)

where A is the minimum cigenvalue of the general ised eigenprobletn for  the

differential operator. Then [9] ~f u E ~
m and the differential operator is

strongly coercive we again obtain the hounds of (13) for the nonlinear re-

action in a spherical catalyst pellet.

Thus, to obtain global, error estimates for mass t r ans fe r  with nonlinear

reaction in a spherical catalyst pellet we require bounds on the derivative

al/ac of the nonlinear term. This implies that for  mildly nonlinear problems

we sho ‘d obtain the g lobal rates  i nd i ca t e d  bu t  t h a t  the ra tes  have not been

established theoreticall y for problems with boundary— ’ayers that are very
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pronounced .

Su pe rc onve~~~~~e

For linear problems the r e ar e special  points within the elements at

which the approximation is much more accurate than the global rates suggest.

if p(x) = 1 and q(x) = 0 the approximate solution is exact at the nodes and

for more general linear d i f f e r e n t i a l  equat ion s  one can prove tha t  the solu-

tion or its derivatives are locally very accurate at special points such as

the Gauss or Jacobi points [12]. In the case of the C
0 
Galerkin method the

solution is superconvergent at the nodes (knots) and the derivative is

superconvergent at the Gauss points , whereas in the previous C1’ colloca-

tion investigations the solution is superconvergent at the Gauss points

[7]. The following numerical studies are desi gned to investigate super—

convergence for the class of practi cal catal yst models described earlier.

We firs t consider the problem of e q u a t i on  (l)—(2) with Bi -
~~ so

that the boundary condition becomes c(l) = 1. (in a spherical domain and

with small Thiele niod~iltis we obtain a sn i o o t i i l v  varying, almost parabolic

solution. The nonlinear reaction rate t~~ra

f ( c ) = ~
2c exp[y( l- l /T) ) , T 1 + ~ - ~~c ~l5)

corresponds to an irreversible , first—order , non— i sothermal reaction and

parameters ~ = 0.8, y = 18, 13 = 0.3 are chosen. the choice ~ 0.8 for the

Thiele modulus yields a concentration profile that varies from approximately

0.7 at x = 0 to 1.0 at x = 1. At smaller ~ values the solution changes

very slowly and it is difficult to display the superconvergence results

effectively for finite precision computations.

From the linear theory we anticipate t aiL , at least for moderate non—

linearities of th~ type indicated above , g loba l Ly 11w finite element solution

on a uniform mesh should be 0(h~~~) acccrale and th e der ivat ive  O(h k ) ,  wh ere
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k is the  degree OL the element p o lynomia l  - with piecewise linear these L
2

error estimates are 0(h
2
) and 0(h), respectivel y. Sthce the derivative c’

is superconvergent at the Gauss points in the linear problem, we now look

for 0(h
2) at these po in t s  in the  non l ine . i r  t i L a l y a t  model . As the Gauss

points are to be interrogated for supcreonvergent derivatives , a set of

nested mesh refinements is designed such t h at s~ccific Gauss points are

cosm~on Gauss points to all the meshes. This imp lies that the clement basis

for these numerical experiments be of odd degree and that  in successive

nested refinements each element be split to au odd number of elements. In

this way the central Gauss point of an element is preserved through success-

ive refinements.

Using an initial mesh of 5 elements and a piecewise linear basis, the

errors in solution and derivative at the Gauss points (0.1,0.3,... ,0.9) are

computed and monitored in Table 1 for successive meshes of 25, 125 and 625

elements. The derivative values computed from a mesh of 1250 elements are

taken as exact to ten decima l places on the basis of these refinement studies

and global o r thogona l  en 11 oca t ion eumpu t  a t i niis 1 n (10111) i.e pr ec is iou .

Given errors in the der iva t ive  of the form 0( 1u~
>) at the Gauss points

the power p is obtained as the shape of t h e  l o g — t o g  plot of the magnitude

of this error and mesh size h in Figure 1. The slopes for Gauss points

0.1 ,0.3 , . . .  ,0 .9 are , respectively , 2.0,2.0,l.b ,l .S , which confitms the 0(h2)

superconvergence properties . The error in the solution at these points yields

log—log curves with slopes 2.1,1.9,1.9,2.0,2.0 determined in like manner.

Similar results are obtained with higher—degree elements (quadratics, Cu—

bics , . .. ) .  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
-: T T1~~
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Figure 1. Error in derivative at the selected Gauss points 0.1,0.3,... ,O.9.
Slopes give the superconvergence rates e ’ — 0(h2) for computations
with linear elements here and in gencr~1 e’ — pOik’4’1) for elements
of degree k
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Optimal Flux ComputJL 10135

The boundary f lux is of p~~r t 1cu la r  fn t t~rez;t in practice as t I i t  govern ing

equations in the pellet model are coupled to the mass and energy balances in

the fluid phase through the boundary conditions . For our purposes an essen-

tially exact flux dc/dx  = 0.2834734796 accurat e to all ten places is deter-

mined from a sequence of computations with uniform mesh refinements using

quartic elements. This is used for comparison of computed fluxes using the

standard approach and a new method recently proposed for which optimal es-

timates have been proven of linear problems E15J .

The standard procedure for computing the beundary flux from the ap-

proximate solution Is to differentiate the approximation polynomial on the

last element and evaluate the resulting polynomial at the boundary node

concerned. Since c(x) is O(L~
k
) at x = I then c’ is Oth~~~). The new method

is based on a quadrature algorithm on the last clement.

The essential idea is to begin with the  w e i g h t e d — r e s i d u a l  condit ion  and

integrate by parts  as 1~ the usual v a r i a t i o n a l. 1oriuulation , but b y choice

of a specific test (we ight)  func t ion  de te rm in e  the flux from the element

quadratures Involved. Let [x
I~_k,

x
fl
] denote the extreme element and apply

the weighted—residual condition in equation (1), followed by integration by

parts, to again obtain the variational statement in equation (3). The quan-

tity of interest , c’(l), appears in the integrated boundary terms.

In the present Instance we have computed an approximate solution c(x)

and by simply setting v(O) — 0, v(1) = 1 in equation (3) we obti~I1i an ex-

pression for c’(l),

c’(t) J x
1_1

(cI(x)vI (x) + f ( . - ) v ( x ) )d x  ([s)
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More particularl y, If v(x) is chosen as the linear test function on the last

element ~ a

0 , x E [O ,X k]

v(x) (17)

(X_X
n k )/h

m , X € [X~~~~,l]

Using the computed finite element solution for c(x) In the integrand of (15),

we need evaluate only simple quadratures on the last element to obtain the

computed derivative,

F(l) - 
~~~ !~~
:

a_l
ce (x)dx + 

!~~
:

a l

~~~
)v
~~

)
~~ 

(18 )

In linear problems if c (x)  has (t+] ) squ a r e— ll lt eg r ab l e  derivatives (to be

precise, c € H t
~~~(~2)f l  H~~U2) with 11t+1 ~~ representing standard tlilbert

spaces (18]) then the error in F is O(ht~~) where k is the degree of the

element polynomial. The formulation is easil y modified to yield the flux

at an arbitrary node or any point ~ in [0 ,11.

The formula (18) Is used in the Pellet prob lem to compute the boundary

flux and is compared with results obtained by the standard approach . Uniform

mesh refinements from 2 to 32 elements are employed for linear and quadratic

elements in the comparison. In Table 2 errors In the boundary flux for

each of these cases are examined . The new scheme for computing boundary

flux is evidently superior: for exam ple , computing on a mesh of 16 quartic

elements, we obtain 4 place accuracy using the standard method and 8 places

with the quadrature calculations.

—
____  — —

L _ _ _  ~
— — 

-~~~~
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Table 2. Error in Computed lioundary Flux

~~
‘ (1) ’ ( I )  = l~(l)— e’ (1)

2 —2.580325850E—2 —7 .009257E—4

4 —l.20184279E—2 —2.604545E—4

Linear 8 —5 .37663l2E—3 —7.26186E—5
Elements

16 —2.4967754E--3 —1.87041E—5

32 —l .l950l25E—3 —4 .713 E—6

2 6.9828196E—3 —5.0954E—5

4 l.944] .702E—3 —3 . 476 1E—6

Quadratic 8 4.938324E—4 —2.225 E—7
Elemen ts

16 1.23453lE—4 —1.39 E—8

32 3.08068 E—5 8.6 E—9

The rates for th i s  nonlinear s ingular  problem arc consistent with those

predicted for linear problems. ~gain, a log-log plot of the magn Lt ude of

the error in boundary flux against mesh size Ii determines the experimental

rate of convergence for F (l). The rates (p) are the computed slopes of the

linear regression curves in Figure 2: linears , p 1.97 , (2); quadratics ,

p 3.9, (4). Corresponding computed rates for ..the standard method are

J.ll ,(1) ,  and 1.96,(2), respectivel y. Th e conc l usion concerning rates for

elements of degree k is that differentiation produces fluxes of accuracy

O(hk) while the optima l result Q(1~2k
) Is obtained using the new quad rature

scheme. The implications for nonlinear computations , especially if the pci—

let problem is to be solved numerous time s for flux or effectiveness factor

• 1  

0

_ _ _ _ _ _  ~~~~~~~~~~~~~
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Figure 2. Error in boundary flux for pellet problem shoving rates(slopes) for d ifferentiation formula and new quadratureformula.
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calculations, are ev ident .  Since the work est imates  for  nonl inear solution

are dramatical ly  reduced if a coarser mesh can be used , fluxes of a desired

accuracy can be computed much more efficiently using the quadrature result.

For example, a flux computed by differentiation from an approximate solution

of 32 quadratIc elements (65 nodes) is less accurate than the new flux com-

puted from a mesh of 2 quadratics (5 nodes). The respective computation

times (using an efficient block diagonal—solver at each iteration to solve

for c(x) differ by a factor of approximatel y 16.

Computational Aspects

A few brief remarks concerning computational details conclude this seg-

ment of the investigation. The design of the finite element program is

based largely on that in reference [7] for the C1 orthogonal collocation

technique and is described there in some detail. Accordingly, only the

main distinc tions will be noted here.

The collocation t e ch n i qu e  leads to non — svnuue t  r Ic coefficient matrices

for the Picard successive approximation systems and to a non—synmietric

Jacobian in the Newton Iteration necessitating !ion—syimnetric system solvers

for each linear Iteration. In the Calerkin analysis for the stated class of

self—adjoint differential equations, the finite element systems are synunetric.

More efficient s:~arse elimination methods may be applied here and special

iterative methods are also applicable [20 ,21).

The sparse matrices again have a block—diagonal structure each block

being of size (k+l) x (k+l), where k+l denotes the numbe r of nodes in element

e . This structure can be exploited to economize both storage and solution

as described for the finite element collocation method. The special quadra—

tures for optimal flux computat ions can be carried out using the basic Gaussian

quadrature routines implemented for calculating the element matrix contribu-

tions to the (Galerkin) finite element system.
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Part II. COLLOCATION-CALERKIN METHOD , JACOB I PO INTS, ANt) FLUX CALCULATION

C°—~ollocat ion—Ca lerkin Mc hod

Finite element collocation methods remove the  necessity for  element

quadrature but require smoother bases . This smoothiiess condition becomes

more prohibitive in higher dimensions. Even for t u e one—dimensional pellet

models of interest here , there are situations such as those associated with

layers and discontinuities where the less smooth (P Calerkin methods are

more appropriate. As the terminology suggests , the C
0
—Collocation—Galerkin

method combines features of both collocation and Calerkin finite element

methods. The main theoretical foundations and error estimates for linear

and nonlinear problems are described in references [15], [161, and [16].

Qualitatively, the method is more like the C~ collocation scheme. On

any element of degree k > 2 the residual is collocated at k—i interior points.

Rather than enforce continuity of the derivative at interface nodes between

elements, we require that a Galerkln projection for the variational problem

hold there. Specifically, at the interface the nodal equation arises from a

Galerkin projection of the residual with a tes t function that is only piece-

wise linear on the patch associated with the interface node.

To formulate the method return to the variational statement presented

in equation (3),

1.
f I

— J x~~
1(c ’ (x)v ’ (x) + f (c )v ) dx  + x~~~~c ’ ( x ) v ( x )  0 (19)

0

Define a partition of m el ements and a C° T.a~rangc bas i s as in the Galerkin

method of Part I so that

c(x) ~ c •.(x) . (20)

LI 
~~~~~

-—
~~~~~~~~~~~~~~~~~~~~~~~~~~

—--- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the basis {4~j 
(x )  }, j I . . . ,n are • i g a  in  p 1 ee w i~.e —polynomi:i I patch

functions Identified w i t h  the nodes j .  A~; usual , on eleme nt e,

k+1
C
e
(X) ~ C~94~~~(X) (2 1)

j=l

where {g
(e)
(~)} are the Lagrange polynomials and here C . are local (element)

values of c (x).

For test functions we select piecewise linear “hat ” f u n c t i o n s  {~~~(x) },

where {r} are the in te r face  nodes. Settin~, v (x) = 
~~(x) and using the ap-

proximation (20) in the variational statement ( 1 9 ) ,  Wt obtain a set o~ m+i

finite element equations associated with the interface nodes and boundary

nodes and of the form

1 1

~ ~~~
1~~~
4j 

+ J ‘
~ r(~~~~~~

dX + ~~~ (x ) v (x )  = ~ (22)

the boundary conditions being included as in the Calerkin formulation .

On element e , ~~
(x) E 

~r~~
<) and is linear, so that the element contribution

to interface equation (22) is

k+l
g
(C)(c) a 

~~~~ ~~~~~~~~~~ 

l
LI (X)dX)C + (23)

The remaining interior collocation equations may he derived from

equation (19;. Since the element basis Is C In the open interior  of each

element, we may reform the element residuals by Integrating by parts in (19)

to obtain

— f(c)}v dx 0 (24)

_ _  .
.

- - - .- . . 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

. -.-
~~~~~~~~~~~~~

--
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for test functions satisf ying v = 0 at the Cud i io t l t s of each elcuent . in-

troduce del ta function distr ibutions for v (x) to collocate the differential

equation at k—i points {x~} in the interior of each element ,

k-fl

~ (x ’1 19.~ (x ) ) ‘ Cj  
- f ( c )  0 p = 1,. ..,k-l (25)

jal ~ p

The appropriate collocation points for optimal accuracy are the Jacobi

points in the element. Let {cz~}~ j = 1,... ,k—i be the set of Jacobi points

on interval I [0,1] and the Jacobi weights defined by the quadrature

formula

r k— i
Jx(l-x)pdx ~ &(]-a.)p(a,)w . (26)

j=l -~ ~ .1

for p (x) € 
~2r —3~~~ 

, th e set of pol ynomi a l s  of  t egr ec 2 r — 3  on I . Then on

element r , the c o l l o c a t ion  points ar~ lot -at ed at .

= x 4- b ~~~ . , r = 1., . . . ,m ; j  1,... k—I (27)r j  r r j

In [18] we demonstrate that for the linear problem the numerical solution

is essentially exact at the nodes. Very accurate flux computations can be

made using the quadrature procedure of equation (18). For the linear prob-

lem optimal estimates

I e (x ~)~ - 0(1
2
5 and ~e ’(x .)l O(h2r

) (28)

are obtained when the flux is computed In this manner. The theoretical

estimates for the nonlinear problem are developed in ( 16].
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Flux Computat ion and .laca hi

We return to the  catalyst pci) et prob I eu e >aliui ne the a) ternat ive

flux techniques, again comparing computed v a lu e s  of the boundary f l ux . The

numerical studies are designed to demonstrate th e theoretical results stated

above concerning use of the Jacobi poin ts as co l l o c a t ion points arid also the

quadrature rule for flux computation. Again , f(c) 4
2
c exp [y(l—l/T)J,

I
T a ~ + ~ — 13c and c ’( 0) = 0, c(l) = 1 are prescribed . The reaction para-

meters for this comparison study are ~ = .5, y = 18 and ~ ~ .3.

In Table 3 the error in the boune.ary flux is given for solutions com-

puted on meshes of 2, 4 and 8 quartic elements. The derivative F( l )  is com-

puted by the quadrature formula using a fin:ite element solution obtained by

collocation at the Jacob i points. The derivative ~‘(l) is computed directly

and in the table we demonstrate the relative accuracy here for solutions ob-

tained by collocating at the Jacobi and Gauss points , respectively. There

is a modest improvem en t  (abou t one decima l p 1 ;L c&.) if we compute the det iva—

tive directly from a collocation solution at the Jacobi rather than Gauss

points. If in addition the  quadra tu re  techni que is utilized , two or three

further decimal places are obtained.

Table 3. Derivative accuracy using q u ad rat u r e  and Jacob i ~ioiat s.

Mesh Jacobi Points Gauss Points

(h~~) - c ’(l)I ~~‘(l) - c ’(i) { 
~~

‘(l) -

2 2.1 x i0 8 3 7  x 10~~ 1.0 x

4 2.0 x 2.2 x io 6 .o x io 6

8 3.0 x 10~~ 1.6 x io
_8 

8.0 x l0~~
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These results are also borne out in T a b l e  4 where errors In the flux are de-

termined from solutions on meshes of 2, 4, 8 and I~6 cubic elements. The

solutions are obtained by collocation am . t h e  Jacobi poin ts. From a log—log

plot of error and mesh size tt we obtain 
~
‘(l) — c ’ ( l ) ~ 0(h

3 4
) 0(h

4
),

k+1 = 4 and F(l) - c ’(l)I 0(11
8
).

Table 4. Boundar y f l ux  comparison f o r  quadrature approach.

Mesh (h 1) jF - c ’ (1) ~‘ (~~ ) - c ’ (l)j

2 5. 9 c lO~~ 4.3 ~

4 2.7 X l0~~ 3.7 x io
6

8 1.8 x io~~0 3.8 x

16 1.2 x 10
_li 

3.9 x

Remark

The smoother C1 app roximations used I i i  f i n i t e  element  col1o .~at ion

Impose a quasi—uniformit.y requirement on nonun i form meshes encountered in

practice. This restriction ott the mesh does not apply to the C
0
—Collocation—

Galerkin procedure.  The C° methods are , conseque n t l y ,  be t t er suit ed  to

implementation in programs tha t  incorpora t e  au t o m a t ed mesh—ref inem en t  st ra te -

gies. This latter consideration is particularl y important in nonlinear

boundary—layer problems corresponding to pellet models with large fliiele

modulus [22).
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